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The fracture stress of an elastic-plastic solid is calculated by making an approximate 
analysis of the crack model in which a small enclave that is surrounded by a plastic region 
is considered to exist at the crack tip. An attempt is made to improve Thomson's earlier 
analysis of this crack model by ensuring that displacements as well as traction stresses are 
continuous across elastic-plastic boundaries and by ensuring that the correct fracture 
equation is obtained for the limiting case of a perfectly elastic and a perfectly plastic 
solid. The fracture stress is found to increase if either or both the yield stress of the 
material is lowered or the rate of plastic work-hardening is reduced. It is found that the 
fracture stress, in contrast to Thomson's result, it is always proportional to the square root 
of the true surface energy of the solid. 

1. Introduction 
Thomson [1,2] obtained a fracture equation 
through use of a crack model in which an elastic 
enclave exists at a crack tip. He found that the 
fracture stress depends upon the true surface energy 
of a solid but generally it is not proportional to 
the square root of the true surface energy. On the 
other hand, we found [3] independently using the 
same crack model that the fracture stress is always 
proportional to the square root of the true surface 
energy. 

The fracture stress equation that we obtained is 

o, = [4#7/a0rot--  2/3)] 1/2 (1) 

where o, is the fracture stress, a is the crack half- 
length, /a is the shear modulus, 7 is the surface 
energy, ~ = 1--z, where v is Poisson's ratio, and 
/3 is a term which is a measure of the plastic work 
that is done when a crack extends by a unit 
distance. (In a perfectly brittle solid/3 = 0; if the 
plastic work done is exactly equal to the loss of 
stored elastic energy then/3 = trot/2 and the frac- 
ture stress has an infinite value.) 

Thomson obtained his fracture equation by 
taking the known solution [4] of the stresses in 
the plastic zone around a stationary Mode III 

crack. He then matched stresses across elastic- 
plastic boundaries, No attempt was made to 
match displacements across these boundaries. 
We suggested [3] that the failure to match 
displacements across the boundary might be 
the origin of the discrepancy between our results. 
However, there is another, more serious difficulty 
with Thomson's solution. He based his approxi- 
mate analysis on the solution of a stationary, 
rather than a growing crack. But from the general, 
exact stress and displacement field solution of a 
stationary Mode III it is possible to show (using 
Equation 21 of [4]) that if there is an elastic 
enclave at the crack tip that the crack actually 
will start to propagate when the applied stress 
is equal to the fracture stress of a perfectly brittle 
solid. (This fact served as the starting point of a 
fatigue crack growth theory we recently developed 
[51.) 

In this paper we attempt to improve Thomson's 
analysis by using the (not completely developed) 
plastic zone solution of Amazigo and Hutchinson 
[6] for a growing crack and by matching displace- 
ments as well as stresses across elastic-plastic 
boundaries. 
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Figure I Elastic-plastic stress strain curve. 

2. T h e o r y  

In the derivation of Equation 1 it was assumed 
that the plastic flow curve is of the general form 
shown in Fig. 1. The material is elastic up to the 
yield stress a0. It is plastic above the yield stress 
ao and below a stress aT. And the material is again 
elastic once the stress has exceeded the stress aT. 
A reasonable upper limit on the value of the stress 
term aT is the theoretical strength of the material 
(aT ~ #/10); a reasonable lower limit is the average 
internal stress that exists in a solid when the dis- 
location-cell size is the smallest ever observed 
(aT ~ #/400). Within the elastic enclave (see Fig. 
2) at the crack tip the stress level is considered to 
exceed the stress aT. 

Now consider matching stresses and displace- 
ments at both the boundary between the elastic 
enclave and the plastic zone around it and the 
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Figure 2 Elastic regions and plastic zone 
around a growing crack. 
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Figure 3 Linear elastic-plastic stress strain curve. 

boundary between the plastic zone and the much 
larger elastic region which surrounds the plastic 
zone. It is unfortunate that the complete, exact 
solution for this and similar problems of a growing 
crack does not exist. Thus only a rough approxi- 
mation can be made. Let r c be the average dimen- 
sion of the elastic enclave (which is shown circular 
in form in Fig. 2 although in actuality it probably 
is not) and ro be the average dimension of the 
plastic zone at the crack tip. Amazigo and 
Hutchinson [6] have analysed a growing crack in a 
linear work-hardening material with a plastic flow 
law shown in Fig. 3 and by the equations 

o = #e (2a) 
for o < oo and 

o = #eo + #p(e -- eo) (2b) 

for o > Oo where e is the strain, eo = Oo/#, and 
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TAB LE I Values of the constant 
p for various values of the ratio 
f =/ap[g calculated numerically 
by Amazigo and Hutchinson [6] 
for plane strain conditions with 
v = 1/3 

: p 

1 0.5 
0.5 0.442 
0.3 0.373 
0.1 0.197 
0.05 0.136 
0.01 0.0887 

/ap is the linear plastic hardening rate. They 
showed that the strain in the plastic zone (region 
II of Fig. 2) is proportional to r -p where r is 
distance from the crack tip. The constant p is a 
function of the ratio f=/.tp//z. Table I gives values 
of p they calculated numerically for different 
values of the ratio. Thus within the plastic zone 
the strain ell, the stress oii, and the displacement 
uli must be of the order of 

eli = (Oo/#Xro[r) p (3) 

Ori = co[ 1 - - f  + f ( ro / r )  p] (4) 
and 

uli = (eo/ta) [r/(1 -- p)](ro/r)  p + h(oo/l~) r~, 

(5) 

where ro, re and h are unknown constants. The 
azimuthal angular dependence is ignored in this 
approximate treatment and the fact that the stress, 
strain and displacement actually consist of various 
components rij~ ei i, and ui. At r = ro the stress 
oii, as it must, is equal to Oo. At r = re the stress 
ali must be equal to aT. Hence r e has the value 

~: re = gro (6a) 
where 

g = ftZP][(OT/Oo ) -  1 + f ]  t/p. (6b) 

If or  = Oo the constant g = 1 and, as expected, 
there is no plastic zone. 

In the elastic region that surrounds the plastic 
zone (region I of (Fig. 2) the stress must fall off as 
r -1/2 at distance small compared with the crack 
length but large compared with ro. The following 
general function for the stress satisfies this con- 
dition as well as the static equilibrium equations 

eI = K[(2*rr) 1/2 + ~ {KTn/(2*rr)t/2}(ro[r) m 
I"11 = ! 

(7) 
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where K *  are unknown constants. (Again, the 
azimuthal angle dependency has been ignored 
in each of these terms.) The stress intensity factor 
K in Equation 7 is equal to 

K = Oa(Tra) 1/2, (8) 

where e a is the applied stress. 
In the elastic enclave (region III of Fig. 2) the 

general equation for the stress is given by 

Olii = Kt/(21rr) a/2+ s { K "  /(2rrr)l/2}(r/re) 'n 
? n = l  

(9) 

where Kt and K~n are unknown constants. The 
term Kt is the "true" stress intensity factor of [3]. 
The form of Equation 9 ensures that the displace- 
ment at r = 0 is equal to zero. (Again, the azi- 
muthal angle dependence of each of the terms has 
been ignored.) 

To obtain the values of all the constants in 
Equations 7 and 9 actually requires that the 
angular dependence of these terms be taken into 
account. The traction stresses and the displace- 
ments must be continuous across the I/II elastic 
plastic boundary of Fig. 2 and the II/III elastic 
plastic boundary where I is the outer elastic 
region, III is the inner elastic region, and II is the 
plastic zone. For our rough approximation it is 
only necessary to retain sufficient number of 
terms to ensure that the stresses and displacements 
are continuous across the boundary when there is 
no azimuthal angular dependence and to ensure 
that the solution can reduce to that of a perfectly 
brittle solid when Oo = OT. Thus in Equation 7 
retain the terms that contain the terms K and 
K~ and in Equation 9 the terms Kt and K~. 

After the stresses are set equal to ao across the 
~I/II boundary and to OT across the II/III boundary 
and the displacements are made equal to each 
other across the game boundaries the following 
results are found. 

ro = (2KZ/rrao2)[1 +(1  _p)-X +hg]-2  (10) 

Kt = cK (11) 
where 

c = (gl/2/2)[(aT/aO) + 3p(1 --p)-~g-P + 3h][ 

[1 + (1 - - p ) - t  + hg]. (12) 

The constant g is given by Equation 6b and re is 
still equal to gro. Equation 12 can be rewritten as 



h = {(2cg . . . .  )11+ (1 - -p) -q  --(OT/O0) 

-- (3pg-P)(1 --p)-a}/(3 -- 2cg'/2). (13) 

When O0/aT ~ 1 a n d f ' ~  1, Equation 13 becomes 

h ,~ (4C/3)(OT/Oo)l/21'(I/f) '/2p 

-- (OT/O0)(1 + 3p/f) /3 (14) 

which can be rewritten 

c ~ (3/4)(Oo/OT)I/2Pf 1/2p 

x {h + (1/3)(oT/Oo)(1 + 3p/f)}.  (15) 

The value of the constant h cannot be deter- 
mined uniquely because actually there are more 
unknown constants (h, K~, K~, etc.) than (strong) 
conditions to determine them all. However, 
enough information (additional weak conditions) 
is available to set sufficient limits on the value of h 
that a good estimate can be made of the value of 
the constant c of Equation 1 1. The evaluation of 
the constant c is the primary goal of this paper. 

First of all, the constant h must have a func- 
tional dependence on the terms p,  f ,  g, and OT/O o 
such that in the limit of a brittle solid the constant 
c must be equal to c = 1. Thus when oo = OT and 
f=/= 0 or when f = 1 (or when both Oo = OT and 
f =  1) the constant c = 1. According to Equation 
10 when Oo = OT the term h = ( 3 -  4p ) / (1 - -p ) .  
When f =  1, and thus p = 1/2, the term h = 2(aT/  
OO)/[3--2(%/0T)] .  Thus the term h could be 
given by an expression of the type 

h = {(3 -- 4p)(OT/Oo)/[ 1 + p -- 2p(Oo/OT)]} q 
(16) 

where the exponent q could be equal to q = 2p, 
orq  = 1, or q = 1/2p. 

The constant c must approach zero in value 
either when f -+  0 (and thusp ~ 0) and Oo • aT or 
when OO/OT ~ 0 and f r  1 (and thus p 4= 1/2). 
(According to Ride ([7] and private convers- 
a t i on )  the rate of plastic work of the growing 
crack is exactly equal to the rate of release of 
elastic energy under conditions like these. Hence c 
must be equal to zero.) Thus q 4= 1/2p. Moreover, 
in the limit OO/OT-*O the elastic enclave dis- 
appears. In this situation the displacement uii 
given by Equation 5 must be equal to zero (or at 
least have a finite value) as r ~ 0 and r e --> 0. This is 
only possible if  h increases at a rate no faster than 
a first power of  the ratio Oo/O,r when f=/= 1. Thus 
when ao/OT "~ 1 and f'-~ 1 Equation 15 reduces to 

C = 17[f(OO/OT) 1-2p] 1/2P (17) 

where the constant 17 = (1/4)(1 + 3p/ f )  if h 
increases at a smaller rate than a first power of  the 
ratio oT/o o and 17 ~ (3/4)[3 + (1/3)(I + 3 p / f ) / i f  
the increase is at a first power to this ratio. 

The fracture stress equation is obtained by 
equating K~ with Kcb where Kcb is the critical 
stress intensity factor of a perfectly brittle solid of 
modulus/~ and Poisson's ratio u. The value of Keb 
is equal to 

Keb = (4U7/o01/2- (18) 

The fracture stress os, found by equating Equations 
14 and 18, is 

as = c-l(41aT/lraa) 1/2. (19) 

For a perfectly brittle solid c = 1. When c is given 
by Equation 17 the fracture stress is equal to 

af = 17-1 [f-l(oT/oO)l-2p ] 1/2P(4N7/Trota)l/2" 

(20) 
The constant/3 of Equation 1 is equal to 

(3 = Ora/2)(1-- c2). (21) 

When c is small the fracture stress is very large 
compared with the fracture stress of a perfectly 
brittle solid. The conventional critical stress inten- 
sity factor Kc of the solid is equal to Ke = c-lKcb 
and is also large when c is small. 

It should be noted that the fracture stress given 
by Equation 19 is proportional to 71/2, a result 
that is in disagreement with that of Thomson [ 1, 
2]. The fracture stress, as expected, increases when 
the yield stress decreases and when the rate of 
work-hardening decreases. 

Suppose the flow stress is given by a power law 
relationship of the type that Equation 2a is still 
valid when o ~< Oo but Equation 2b is replaced 
with the equation 

o = o0(e/e0) n (22) 

when o/> Oo. Here n is a constant with a typical 
value of around n ~ 0.2 to 0.3. In this situation 
Equation 2b can be approximated to Equation 22 
by setting f equal to 

f = [(OT/O0)-- 1]/[(OT/O0) l / n -  1]. (23) 

The use of  Equation 22 for fensures that both the 
power law flow and the linear flow law which is an 
approximation to it have common points at 
a = Oo and at a = Or. I f  f given by Equation 23 is 
inserted into the previous equations of  the text the 
approximate value of the fracture stress for power 
law hardening material can be found. In particular, 
when Oo/OT "~ 1 and n 4= 1 the constant c is equal 
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to 
C ~" TI((IO/OT) {(1-n) /n+(1-2p)} /2p (24) 

and the fracture stress is equal to 

of = n - l ( o ~ l o o ) { ( 1 - " ) / " * ( 1 - 2 P ) } n P ( 4 l ~ l ~ a )  1/2. 
(25) 

The smaller the value of  n and the smaller the 
yield stress Oo, the larger, as expected, is the frac- 
ture stress. The fracture stress is infinite in value 
when n = 0. 

It  is interesting to note that if the analysis of  
this paper were repeated using the plastic zone 
solution for a stationary crack that the equivalent 
term h is always uniquely specified by the con- 
dition that e must equal r = 1 for all values of  the 
ratio oT/o o and the exponent n. The value o f h  so 
found gives the result that the displacement at rc is 
indeed equal to zero in the limit of  re -+ 0. 

3. Conclusions 
The approximate treatment of  the crack tip, 
elastic enclave model given in this paper indicates 
that the fracture stress is always proportional to 
the square root  of  the true surface energy of  a 
solid. This result differs from that found by 

Thomson. The fracture stress is found to increase 
if  the yield stress of  the solid is decreased or if the 
rate of  plastic work-hardening is lowered. 
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